Opioidergic modulation of voltage-activated K+ currents in magnocellular neurons of the supraoptic nucleus in rat.
نویسندگان
چکیده
Opioidergic modulation plays an important role in the control of oxytocin and vasopressin release by magnocellular neurons (MCNs) in the supraoptic and paraventricular nuclei of the hypothalamus. We have used whole cell patch-clamp recording in acute slices of the supraoptic nucleus (SON) of the hypothalamus to study opioidergic modulation of voltage-dependent K+ currents in MCNs that are involved in release activity. The mu-receptor agonist D-Ala2, N-Me-Phe4, Gly5-ol-enkephalin (DAMGO, 2 microM) affected K+ currents in 55% of magnocellular neurons recorded from. In these putative oxytocinergic cells, DAMGO increased the delayed rectifier current (IK(V)) amplitude by approximately 50% without significant effects on its activation kinetics. The transient A current (IA) was enhanced by DAMGO by approximately 36%. Its inactivation kinetic was accelerated slightly while the voltage dependence of steady-state inactivation was shifted by -6 mV to more negative potentials. All DAMGO effects were blocked by the preferential non-kappa-opioid antagonist naloxone (10 microM). The kappa-opioid agonist trans-(+/-)-3, 4-dichloro-N-methyl-N(2-[1-pyrrolidinyl]cyclohexyl)benzeneacetamide (U50,488; 10 microM) strongly suppressed IK(V) by approximately 57% and evoked a 20-mV hyperpolarizing shift and an acceleration of activation in both, DAMGO-sensitive and -insensitive putative vasopressinergic MCNs. U50,488 reduced IA by approximately 29% and tau of inactivation by -20% in DAMGO-sensitive cells. In contrast, in DAMGO-insensitive cells U50,488 increased IA by approximately 23% and strongly accelerated inactivation (tau -44%). The effects of U50,488 were suppressed by the selective kappa-receptor antagonist nor-binaltorphimine (5 microM). We conclude that mu- and kappa-opioidergic inputs decrease and increase excitability of oxytocinergic MCNs, respectively, through modulation of voltage-dependent K+ currents. In vasopressinergic MCNs, kappa-opioidergic inputs differentially modulate these K+ currents. The modulation of K+ currents is assumed to significantly contribute to opioidergic control of hormone release by MCNs within the supraoptic nucleus and from the axon terminals in the neural lobe.
منابع مشابه
Effect of interaction between acute administration of morphine and cannabinoid compounds on spontaneous excitatory and inhibitory postsynaptic currents of magnocellular neurons of supraoptic nucleus
Objective(s): Opioids and cannabinoids are two important compounds that have been shown to influence the activity of magnocellular neurons (MCNs) of supraoptic nucleus (SON). The interaction between opioidergic and cannabinoidergic systems in various structures of the brain and spinal cord is now well established, but not in the MCNs of SON. Materials and methods: In this study, whole cell pat...
متن کاملThe comparison of the effects of acute and repeated morphine administration on fast synaptic transmission in magnocellular neurons of supraoptic nucleus, plasma vasopressin levels, and urine volume of male rats
The activity of the magnocellular neurons (MCNs) of supraoptic nucleus (SON) is regulated by a variety of excitatory and inhibitory inputs. Opioids are one of the important compounds that affect these inputs at SON synapses. In this study, whole-cell patch clamp recording of SON neurons was used to investigate the effect of acute and repeated morphine administration on spontaneous inhibitory an...
متن کاملThe comparison of the effects of acute and repeated morphine administration on fast synaptic transmission in magnocellular neurons of supraoptic nucleus, plasma vasopressin levels, and urine volume of male rats
The activity of the magnocellular neurons (MCNs) of supraoptic nucleus (SON) is regulated by a variety of excitatory and inhibitory inputs. Opioids are one of the important compounds that affect these inputs at SON synapses. In this study, whole-cell patch clamp recording of SON neurons was used to investigate the effect of acute and repeated morphine administration on spontaneous inhibitory an...
متن کاملThe Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus
Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...
متن کاملIncreased synaptic activity in magnocellular neurons of supraoptic nucleus and plasma vasopressin levels due to acute administration of morphine in male rats
Introduction: The magnocellular neurons (MCNs) of the supraoptic nucleus (SON) play a crucial role in control of physiological and pathophysiologiccal condition due to two peptides that they synthesize, i.e. Oxytocin (OXT) and Vasopressin (AVP). The activity of MCNs is regulated by a variety of excitatory and inhibitory inputs. Opioid receptors are one of the important receptors in SON synap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 81 4 شماره
صفحات -
تاریخ انتشار 1999